

Predicting Phytoplankton Functional Types with Remote Sensing Data

Tim Moore
University of New Hampshire

Chris Brown NESDIS STAR

8/27/15

Ocean color approaches for discerning phytoplankton communities from remote sensing

- Functional type (biogeochemical function)
 - Spectral approach PHYSAT, PhytoDOAS
- Phytoplankton size (governs many traits)
 - Spectral approaches (absorption, backscattering properties)
 - Chlorophyll approaches

Table 1. Summary of the algorithms, contact person, PFT represented.

Algorithm	Contact Person	PFTs	Methodology
Brewin et al. (2010)	R.J.W. Brewin	Micro, Nano, Pico	Abundance-based
Devred et al. (2006)	E. Devred	Micro, Nano+Pico	Abundance-based
OC-PFT	T.Hirata	Micro, Nano, Pico, Diatom, Haptophyte, Prokaryotes, Chlorophyte, Pico-Eukaryotes, Prochlorococcus	Abundance-based
Uitz et al. (2006)	J. Uitz	Micro, Nano, Pico	Abundance-based
PHYSAT	S. Alvain	Diatom, Nanoeukaryote, Prochlorococcus, Synechococcus-like, Phaeocystis	Optics-based
PhytoDOAS	A. Bracher	Diatom, Cocolithophore, Cyanobacteria	Optics-based
Ciotti and Bricaud (2002)	A. Bricaud	Micro, Pico	Optics-based
Fujiwara et al. (2011)	T. Hirawake	Micro, Nano, Pico	Optics-based
Kostadinov et al. (2009)	T. Kostadinov	Micro, Nano, Pico	Optics-based
Mouw et al. (2010)	C. Mouw	Micro, Pico	Optics-based
Roy et al (2012)	S. Roy	Micro, Nano, Pico	Optics-based

http://pft.ees.hokudai.ac.jp/satellite/index.shtml

Niche Concept

from Balch, 2004

- Widely accepted that PFT groups have distinct biogeography.
- Margalef Mandala is a useful construct to understand phytoplankton distributions across a varied environmental landscape.
- Niche models widely used in ecology to describe species distributions.
- Statistical in nature, and depends on assumptions regarding species presence/ absence.

SeaWiFS coccolithophore bloom patterns

A Coccolithophore 'bloom' niche model

- Using OC data, bloom pixels used as mask to select colocated environmental data
- Niche was characterized by statistical distribution of environmental data (SST, MLD, PAR, Winds).

PFT Training Data Set % Phytoplankton Atlantic Ocean of Chla **HPLC Data** Diatoms Dinoflagellates Prochlorococcus **AMT** SeaBASS Prymensiophytes **CHEMTAX** CLIVEC Chlorophytes (based on 'known' Pangea Chrysophytes pigment ratios) Crytpophytes Synechococcus Prasinophytes N ~ 2500 PFT groups 4 PFT groups created **Dominant PFT** identified as fraction of **Diatoms** Synechococcus biomass > 0.45Coccolithophores added from existing Nano model Prochloro flagellates

Atlantic matchup data set

- ~800 matchup points between HPLC in situ and satellite variables.
- 340 points had a 'dominant' PFT present (~50%).
- Nanoflagellates dominated PFTs (~70%).
- Synechococcus dominant least abundant (5%).

Statistical Model

$$Z^2 = (\mathbf{V}_{rs} - \mathbf{y}_j)^t \sum_{j=1}^{-1} (\mathbf{V}_{rs} - \mathbf{y}_j)$$
 Chi-square PDF

V_{rs} – Environmental vector

 $\mathbf{y}_{j} - j$ th PFT mean vector $\mathbf{\Sigma}_{j} - j$ th PFT covariance matrix

Performance matrix – 5 PFT types

Scenario	Training* % correct	Eval** % correct
1	43.9	40.6
2	58.8	50.7
3	70.7	55.6
4	72.3	55.7
5	79.3	63.9
6	88.7	72.6

- Best performance with all variables combining OC & env data.
- Systematic additions of variables improved performance.

Scenario 1: PSD only

Scenario 2: Sc1 + SST

Scenario 3: Sc2 + PAR

Scenario 4: Sc3 + MLD

Scenario 5: Sc4 + wind

Scenario 6: Sc5 + nutrients

*Training Data used from 'dominant' points in pool of data (N=370)

**Data not used but 'not dominant' from remaining pool of data (N=421)

Summary

- A model was developed to predict dominant PFT groups at the oceans surface using particle size information from ocean color imagery combined with environmental data.
- The model was based on a 'habitat/niche' concept formed by observed relationships between identified PFT groups (from in situ HPLC) and co-located satellite variables (e.g., PAR, MLD, wind, SST and nutrients).
- Model is driven by assumptions on 1) initial Chemtax-derived phytoplankton group accuracy, 2) partitioning of these groups into PFTs, and 3) niche concept applying to broad phytoplankton groups.
- 5 PFTs were characterized in this model: Nanoflagellates, Diatoms,
 Coccolithophores, Prochlorococcus and Synecococcus.

Summary (continued)

- The model currently works predicts correct PFT 86-90% based on training set, and about 70% accuracy with a separate data set that is not totally appropriate for the model since there are no 'Dominant' points in that data set.
- Despite the large matchup data set, only 1/3 of the points were 'dominant', and more data would be beneficial for both further training, and evaluation.
- The output maps look reasonable, but its difficult to assess without other metrics to validate.

Future Work

- Explore alternative PFT groupings.
- Utilize upcoming PSD imagery for Aqua and VIIRS (Kostadinov).
- Assess model with an appropriate validation data set.
- Utilize monthly nitrate product for Atlantic (J. Goes).

Backup Slides

